Cover Picture: MRI Thermometry Based on Encapsulated Hyperpolarized Xenon (ChemPhysChem 16/2010)
نویسندگان
چکیده
منابع مشابه
MRI thermometry based on encapsulated hyperpolarized xenon.
A new approach to MRI thermometry using encapsulated hyperpolarized xenon is demonstrated. The method is based on the temperature dependent chemical shift of hyperpolarized xenon in a cryptophane-A cage. This shift is linear with a slope of 0.29 ppm °C(-1) which is perceptibly higher than the shift of the proton resonance frequency of water (ca. 0.01 ppm °C(-1)) that is currently used for MRI t...
متن کاملHyperpolarized Xenon Brain MRI
Since hyperpolarized 129Xe MRI was first demonstrated in the lung, air space imaging using hyperpolarized noble gases (129Xe and 3He) has progressed at a rapid rate (Goodson, 2002; Zhou, 2011c). Owing to high lipid solubility, absence of background signal in biological tissue, non-invasiveness, lack of radioactivity, different relaxation to oxygenated and deoxygenated blood, and larger chemical...
متن کاملHyperpolarized xenon for NMR and MRI applications.
Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) suffer from intrinsic low sensitivity because even strong external magnetic fields of ~10 T generate only a small detectable net-magnetization of the sample at room temperature (1). Hence, most NMR and MRI applications rely on the detection of molecules at relative high concentration (e.g., water for imaging of biological tissue) o...
متن کاملValidating Excised Rodent Lungs for Functional Hyperpolarized Xenon-129 MRI
Ex vivo rodent lung models are explored for physiological measurements of respiratory function with hyperpolarized (hp) (129)Xe MRI. It is shown that excised lung models allow for simplification of the technical challenges involved and provide valuable physiological insights that are not feasible using in vivo MRI protocols. A custom designed breathing apparatus enables MR images of gas distrib...
متن کاملHyperpolarized xenon NMR and MRI signal amplification by gas extraction.
A method is reported for enhancing the sensitivity of NMR of dissolved xenon by detecting the signal after extraction to the gas phase. We demonstrate hyperpolarized xenon signal amplification by gas extraction (Hyper-SAGE) in both NMR spectra and magnetic resonance images with time-of-flight information. Hyper-SAGE takes advantage of a change in physical phase to increase the density of polari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ChemPhysChem
سال: 2010
ISSN: 1439-4235
DOI: 10.1002/cphc.201090079